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1. AMG for finite element problems; defini- 
tion(s) 

What is AMG for f ini te element problems ? 

One  needs a coarse space Vc, subspace of  the  
original f ini te element space V .  It is desirable 
tha t :  



the coarse space Vc admits a “weak” approx- 
imation property, Le., for each v E V one 
should be able t o  find a vC E Vc such that ,  for 
a “small” constant 8, 

1 
llv - vCllo 5 8 a ( v ,  v)7 uniformly in E v, 

Here, / l . l /o is a weaker (typically L*-norm) 
norm than the energy one. 

I n  geometric MG, one has 8 N hc- the coarse 
mes h-size. 

e A target property in AMG for f inite element 
problems, is tha t  the interpolation mapping P 
be approximate harmonic, in the sense tha t ,  
for a “small” constant q ,  uniformly in vc E Vc, 
one has 

In  matrix-vector notat ion this reads: 



Theorem 1 (Two-grid convergence) Assume 
inexact coarse solve, i.e., B, N A,, such- that  

for all V, E Vc. 0 < v:(B, - Ac)vc 5 b v, T Acvc, 
- 

Also, assume tha t ,  

Here, 

T h e  following spectral equivalence estimate holds: 

Here, 0 is a constant in the following stability 
est imate:  

for a particular decomposition v = VI + Pv,. 

I n  the present application llvllo = d v T A v  (hence 
@(A) = 1)- 



2. Building 
minimization 

interpolation based on energy 
principle; 

2.1. Localizing estimates 

I n  AMG one at tempts t o  localize the estimates 
t h a t  provide “approximation property” and builds 
interpolation mapping which does “a best” j o b  
I oca I I y. 

I n  AMGe, (given coarse grid) one computes P 
row-wise, such tha t  



Neighborhood Q(Z)  consisting of triangular elements about dof “i” . 

Here, Q(i )  is a mesh-neghborhood o f  i which 
contains the coarse dofs “0” (forming the com- 
ponent vC of V) tha t  are  sed to  interpolate t o  i. 
T h e  complementary set of  dofs ( ‘5’ ’  and “x”) t o  
the interpolatory coarse dofs forms the vf com- 
ponent of  V. The  matrix An(i> is a local matr ix 
corresponding t o  the neighborhood Q(i )  and in 
the AMGe method i t  is assembled from the local 
element matrices o f  the elements tha t  form Q(i) .  

One notices, tha t  local est imates imply global 
estimate. 



Le t ,  P = 

since v - 

Aff [ A,f A,, 1 '  
1 one gets, t ha t  P 

solves the fol lowhg minimizabon problem, 

Since the numerator is independent o f  vC we can 
replace vc wi th  t vc1 any t E R and optimize wi th  
respect t o  t .  This  leads t o  

T h e  denominator is minimized for 

which leads to, the following identity, 



SUP 

SUP 

V 

V 

pfc 
I 

0 V 

which Then, i t  is clear tha t  the best P = 

solves the min mization problem, w 

- 

Vf 
0 

L -I 

AffPfc + A f c  - - 0 .  

and the interpolation 
weights, the row of  P correspondjng t o  dof  i, are 
I.e.,  Pfc = Af. 

-1 
given by the i t h  row of - (Aft)  Aft. 

W e  note, t h a t  in order t o  apply the AMGe method, 
the following critical assumption was made; namely, 
tha t  one allows 

“access to the individual element matrices” 
(on t h e  fine grid). 



3. Spectral-element agglomerate coarsen- 
ing in AMGe 

T h e  selection of coarse dofs requires the follow- 
ing steps: 

an element agglomeration step; 

computing topology of the  agglomerated el- 
ements, especially their vertices and faces; 

computing eigenvectors and eigenvalues of 
local Schur complements associated w i th  the  
interior of the  agglomerated elements and the  
interior of  t he  faces of the  agglomerated el- 
ements. T h e  vertices of  the  agglomerated 
elements and the first few of  the  computed 
eigenvectors are the  coarse dofs. 

creating the same information on the coarse 
level; namely, coarse elements and coarse el- 
ement matrices. 



Le t  AE be a local matr ix corresponding t o  an 
agglomerated element E .  Let  SE be the Schur 
complement of  AE corresponding t o  the interior 
dofs of  E ,  Le., 

AIB  1 } interior dofs AE = I 
ABI ABB } boundary dofs 

Then SE = AII  - AIB(ABB)- IABI .  Le t  QL, k = 
1, 2, ..., be the eigenvectors o f  SE. T h e  vectors 

for k = 1,2,. . . 7 4 ,  form part o f  the coarse basis. 

Similarly, given a face (AEface F )  one assembles 
a local matr ix AF of fine grid elements about 
the interior dofs of  F .  Then one computes the  
(interior) AEface Schur complement SF and i ts 
f i rs t  p eigenvectors q i  of  SF. T h e  actual coarse 
basis vectors equal 



Finally, one considers the vertex dofs i and forms 

the unit vectors e; = 

0 

0 
1 
0 

0 

T h e  coarse basis 

vectors o f  the fine-gird dimension. T h e  coarse 
dofs are the coefficients in the expansion o f  the 
coarse vectors 

Note tha t  the interpo ation matrix 

is orthogonal. 

It is clear tha t  the components {e i} ,  { q k }  and 
{ Q k }  are orthogonal; first, the three groups have 
non-intersecting support, and secondly wi th in each 
group the vectors are orthogonal by construction 
(as eigenvectors of  symmetric matrices). 



3.2. Analysis of the two-grid method 

Consider the complementary (hierarchical) set  of  

spans the hierarchical complement space Vf.  T h e  
coarse space, spanned by {ei}, { q k } k < p  - and { Q k } k < q  - 

is denoted by V,. Note tha t  

degrees of freedom, {qk}k>p and { Q k } k > q .  It 

v = Vf e3 vc, 
is a direct, and even orthogonal decomposition. 

T h e  restriction of A t o  the subspace Vf will be 
denoted by A f f .  We now s ta te  the f irst main 
result. 

Lemma 1 T h e  block A f f  of A is well-conditioned. 

Proof: This  is seen by construction. Le t  vf f 
is a vector wi th vanishing Vf ,  tha t  is, v = 

coa use-g ri d com ponen t . 
Vf 

For some constants CF (depending on the num- 
ber o f  AEfaces of AEs), using well known min- 
imization properties of  Schur complements, one 
gets 



2vF 
= 2  

E 
= C C E  c 

E :  F E ~ E  E 

F f F  

- 

I = E\aE is the 
VF and VI o f v f  

E 

nterior of  E and the components 
are orthogonal; tha t  is, 

'U  

F E d E  
This  implies, 



T h e  constants CE and CF = min{CE-, CE+}, 
where F = dE- ndE+ ( F is formed from the two 
adjacent AEs, E- and E+),  depend only on the 

equals 
the number of AEfaces o f  E .  
topology of the AEs. More specifically - 1 CE 

0 

Remark 1 T h e  above proof actually shows t h a t  
i f  one diagonally scales A f f  (corresponding to the  
AEface-interior dofs and the AE-interior dofs) 
the  resulting matr ix  will have condition number 
bounded by 



Lemma 2 T h e  following approximately harmonic 
properties hold: 

Proof: T h e  above two inequalities are equivalent 
t o  each other, since they are both equivalent t o  
the following strengthened Cauchy-Schwarz in- 
eq u a I i ty, 

T h a t  is why, we prove the f i rst  one only. One has, 
for each AE E and i t s  element matrix AE, by rear- 
ranging the terms and using basic minimization 
properties of Schur complements of  symmetric 



positive sem i-def i n i t e  matrices, 

E 

1 
F 

" E  
1 

= CF(vf)TSFvf + - C(Vf)*SEVf  

1 
F * E  

+ cF(v~)~sFv~ + - X ( ~ C ) ~ S E V C -  
F 2 E  

W e  used here the fact t ha t  the components vf 
and vc restricted t o  AEface-interior and AE- 
interior are SF or SE-orthogonal, respectively. 

By omit t ing the te rms involving vC (which are 
non-negative) one ends up with the est imate,  



0 



T h e  following results concerns the choice of  smoother 

Lemma 3 Consider B f f  the symmetric Gauss- 
Seidel preconditioner to A. Then the following 
inequality holds for any vf E Vf 

where the constant C = OCA; CA is f rom Lemma 
2 and o depends on the condition number of A f f .  

Then, on the general two-grid convergence re- 
sult shown earlier holds based on the three Lem- 
m a s  2, 1 and 3. 

T h e  spectral AMGe can be viewed also as a sim- 
ple change of  basis t o  a more stable two-level 
hierarchical one (which also provides orthogonal 
decomposition o f  V = V f @ V , ) .  Thus a fur- 
ther better interpolation may be needed, after 
the change of  basis has been performed. 



4. Sparse element matrix topology and ele- 
ment agglomeration 

4.1. Main definitions and constructions 

By definition, an element is a "list of degrees of 
freedom", e = { d l ,  . . . I c i n e } ,  

and we are given an overlapping partit ion {e} of  
73 (the set of  degrees of  freedom). 

In  AMGe, each element is associated wi th  an el- 
ement matr ix Ae, an n e  x n e  matrix, which here 
we assume t o  be symmetric and positive semi- 
definite. 

T h e  global matrix A is assembled from the  in- 
dividual element matrices A, in the usual way, 
i.e., 

e 



Here, ve = V I , ,  i.e., restriction t o  subset (e c D ) .  

I n  general AMG, we will only need the “element 
topology’’ , and not  the element matrices. 



4.2. Graph based algorithms for coarsening 

T h e  coarsening algorithm based on the “sparse 
matrix element topology” is a straightforward ex- 
tension of  the standard finite element method, 
now in a graph setting. 

Namely, given the following graph, 

“el em en t -n o de” 

which is the incidence sparse matrix “element” i 
(rows) contains “node” j (columns), 

Le., i t  is the rectangular sparse matrix 

Element-Node of ones and zeros, of  size 

(number of  elements) x (number of nodes). 

(“node” means a number of degrees of freedom 
in order t o  handle systems o f  PDEs). 



The incidence 

“node” i belongs t o  “element” j ,  

is given by the transpose of the above rectangular sparse 
matrix, i.e., 

Node-Element = (Element-Node)‘. 

One can consider a number of useful graphs (easily com- 
putable) 

“element-element” = 

- - “element-node” x “node-element” , 

“node-node” = “node-element” x “element-node” , 

The  first one shows the incidence 

“element” i intersects “element” j ,  

whereas the second one shows the sparsity pattern of  the 
assembled matrix, namely, 

“node” i is connected to  “node” j (hence the entry ai>j is 

potentially non-zero). 



4.3. Element faces 

It is typical t ha t  a f inite element mesh generator 
can provide the element topology, namely, 

“element-face” , “face-element” , “face-node” , 
“face-face” , etc. 

If these are no t  available, one can actually com- 
pute them as follows. 

T h e  notion of “face” (similar t o  standard ele- 
ments) is defined as a maximal intersection set, 
Le., consider a l l  intersections 

A face is a maximal intersection set of  the above 
type, or a maximal intersection set of the type 

e n “boundary surface”. 

(if special l ists of  nodes is given, t h a t  provide ad- 
ditional information about the domain boundary) 

- 



If some of the graphs 
construct al l  of  the fo 

are not available one can 
lowing 

“element-face” , “face-element” , “face-node” , 
“face-face” , etc. 

based on the symbolic part of the sparse-matrix 
operations. For example, 

‘ ‘fa ce -fa ce” = “facemode” x “node-face” . 



4.4. Element agglomeration 

T h e  topological information is used t o  devise 
an algorithm t o  agglomerate elements - a new 
overlapping partit ion { E }  of D where each E = 
e l  U e 2 . .  . U e p ,  Le., t o  build the new graph 

“AE-element” where AE stands for “agglom- 
erated element”. 

T h e  following algorithm has the motivation t o  
generate “quasiuniform” “AE” s. I n  particular, i t  
will restore coarse rectangular or triangular ele- 
ments (up t o  boundary effects). 



Algorithm 1 (Agglomeration of elements) 

Given the  graphs 

“face -face ’ I  , “element -face ” and “face-eleme n t ” 

and a weight function w ( f )  = 0 ,  f - face, one performs: 

1. find a face f wi th  maximal ~ ( f )  > 0 ,  then set ~ ( f )  = 
-1 and add on the list of  the current “A€” the ele- 
ments e l  and e2 such tha t  f = e l  n e2. 

2. update w(f l )  for all fl  connected to  f (based on the 
graph “face-face”), according to  the following topo- 
logical rule, W ( f 1 )  := w(f1) + 1 i f  f l  is connected 
to f and once more w(f1) := w(f1) + 1 if fl and f 
belong to  a same element (here one uses the  graph 
“face-element ”); 

3. i f  for all faces fl of the already agglomerated elements 
e (here one uses the graph “element-face”) in the 
current “A€” w ( f 1 )  is less than w ( f >  where f was the 
last eliminated face, the  agglomeration procedure for 
the current “A€” is terminated. Then,  go to step 1 
or stop. 



4.5. Generating coarse graphs needed for 
recursion 

Assume t h a t  the graph “AE-element” has been 
constructed (somehow), then one can build 

‘ ‘A E -fa ce’ ‘ = “AE-element” x “element-face” . 
I .e.,  the A E  in terms of faces o f  the elements. 

Now, one can define faces of  agglomerated ele- 
ments, “AEface” s, based on “AE-face” ; namely, 
each “AE” has a number of  faces o f  the origi- 
nal elements. T h a t  is, we have the lists “AE” - 
“faces” . 

Intersecting two different lists, one gets the faces 
of the “AE”s in terms of the faces of the original 
elements. 

T h a t  is, one defines the new graphs 

“AEface-face” , and “AE-AEface” . 



Then t o  exploit recursion in the agglomeration 
algorithm one sets: 

“element-face” := “AE-AEface” , 

“face-element” := “A Eface-A E” , 

“face-face” : = “AEface-face” x “face-face” x 
( “AEface-face” )T. 

As one can see no nodal information is needed. 

If nodal information is needed, one can for exam- 
ple compute “AEface-node” = “A Eface-face” x 
“face-node” . 



4.6. Vertices 

Geometrically, vertices (in 2D) are nodes t h a t  
belong t o  two (or more) “AEface”s. For this we 
need the graph 

“node-AEface” = ( “AEface-node” )T, 

which can be computed as the transpose o f  

“AEface-node” . 

A formal definition of  a vertex is a minimal in- 
tersection set o f  the type 

V ( i )  = n{ “AEface” : i E “AEface”} 



Definition 1 (Coarse nodes) A minimal set of 
coarse nodes NC c N is provided by -the ver- 
tices of the  “AE”s, Le., one forms the graph 
“no de -coarsen o d e ” ; 

Then one can construct, 

“coarseelement-coarsenode” = 

“AE-node” x “node-coarsenode” ; 

“coarseelement-coarseface” = “AE-AEface” ; 

“coarseface-coarsenode” = 

“AEface-node” x “nodexoarsenode” ; 

and hence be able t o  continue coarsening by recursion. 

Note t h a t  the ”topological” coarsening can be 
independently performed (since no nodal infor- 
mation was needed) and then the coarse node 
selection can be carried out.  

T h e  minimal coarse sets (based on the vertices) 
can be augmented by adding more nodes on t h e  
faces a t  given coarsening level. 



5. Examples of coarse elements 

Sequence of increasingly coarse elements, formed by element agglomeration. 

- 



6 .  Numerical Results 

0 anisotropic problems; 

- div (d+t#)Vu = f, 

where 6 < - 1 and b = [ sine ] for varying 8 .  

posed in R c R2, 
(1) 

COS e 

3d elasticity problems: 

One  notices t h a t  the construction of P is local 
based on local interpolation matrices PE com- 
puted AE-wise. 

Thus  one can define coarse elements by perform- 
ing 

and 



Here, p = p~ and q = qE are chosen such tha t  
for a prescribed tolerance 0 E (0,1],  

# elements 
# dofs 
# levels 

# i terations 
e 

grid complexity 
operator complexity 

Am ax ESFI Q 

296 876 2435 6 452 
169 466 1256 3281 
5 6 7 9 
7 8 9 11 

0.11 0.16 0.18 0.26 
2.40 2.67 2.80 2.85 
3.65 4.51 4.98 5.23 

< - 

Iteration counts and convergence factors for spectral AMGe; 

c = 0.001. Tolerance e = = 0.0625. 
unstructured triangular fine grid, anisotropic Poisson equation, 



Iteration counts, coarsening history and convergence factors 
for spectral AMGe; unstructured triangular fine grid, 

anisotropic Poisson equation; E = 0.001. Tolerance B = 0.25 = z. 1 

# i ter: 11 

level # 

conv. factor: 0.253 

0 
1 
2 
3 
4 
5 
6 
7 
8 

grid compl.: 

T z  
# elm 
6452 
1398 
369 
141 
61 
27 
11 
4 
2 

ble 2 
# nodes 
3281 
3237 
1916 
955 
464 
21 2 
126 
55 
29 

nnz entrie: 
22745 
42043 
3 7924 
21 843 
11484 
5000 
321 4 
1169 
503 

3.131 1 operator compl.; 1 6.415 



Iteration counts, coarsening history and convergence factors 
for spectral AMGe; unstructured triangular fine grid, 

anisotropic Poisson equation; E = 0.001. Tolerance 6 = 0.5 = ?. 1 

I 

level # 

I I I 

0 
1 
2 
3 
4 
5 
6 
7 
8 

T a  
# elms 
6452 
1398 
369 
145 
60 
26 
11 
5 
2 

)le 3 
# nodes 
3281 
3237 
2236 
1512 
1024 
75 7 
598 
507 
481 

nnz entries 
22745 
42043 
48296 
43880 
41 748 
40639 
52546 
71 425 
154405 

1 grid compl: 4.155 1 operator compl: I 22.76 
1 # i ter: 10 conv. factor: I 0.233 



PCG convergence results: ALE3d elasticity problem; 
V( l , l ) -cycIe M G  (Gaul3-SeideI smoother). Tolerance: 

1 8 = 0.03125 = 32. 

il level # 1 1  # dofs 1 # elements nnz 

l l  2 
321 0 

5 
grid compl: 

250 494352 

1 1  # i ter: 
2.802 

4191 I 

operator compl: 9.91 7 

1080 I 286533 1 

20 conv. factor: 0.499 1 

1798 I 54 I 562838 I 
1096 1 12 1 517230 I 
781 4 1549777 
6 71 2 I431017/  



PCG convergence results: ALE3d elasticity problem; 
V( l , l)-cycIe M G  (GauO-Seidel smoother). Tolerance: 

e = 0.03125 = &. 

# dofs # elements 
1638 3 75 

level # 
0 

nnz 
103824 

1 

2.412 

2 

operator compl: 5.018 

3 
4 

grid com pl: 
# iter: 

1067 I 90 1 133489 I 
619 1 21 1133273 1 
376 I 6 1 98372 I 
252 1 2 1 52114 1 

19 1 conv. factor: I 0.479 1 
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